INTEGRATING ROUNDING FUNCTIONS (IV)

18 07 2009

FLOOR AND INTEGER PART PRODUCT DEFINITE INTEGRAL:

\displaystyle I_4= \int_0^x \lfloor x \rfloor \left\{x\right\} dx \displaystyle x^2=(\lfloor x \rfloor + \left\{x\right\})^2 = {\lfloor x \rfloor}^{2} +2 \lfloor x \rfloor \left\{x\right\} + \left\{x\right\}^2
\displaystyle \lfloor x \rfloor \left\{x\right\}=\frac{1}{2}(x^2 - \left\{x\right\}^2 - {\lfloor x \rfloor}^{2} )
\displaystyle I_4=\frac{1}{2} ( \frac{x^3}{3} - I_3 - I_1)
\displaystyle I_4=\frac{1}{2} ( \lfloor x \rfloor \left\{x\right\}^2 +\frac{{\lfloor x \rfloor}^{2}-\lfloor x \rfloor}{2})

The same result can be derived just adding the areas under the curve.

Advertisements

Actions

Information




%d bloggers like this: